The Twelvefold Way

Ben Wallberg

November 18, 2020

Abstract

In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number. This is my cheat sheet, compiled from Stanley [3] by way of Knuth [1] and Wikipedia [4], et al. I use this aid to help me understand and solve Project Euler [2] problems. Project Euler is a series of challenging mathematical/computer programming problems that require more than just mathematical insights to solve.

f-class		Any f	Injective f	Surjective f
	balls per urn	unrestricted	≤ 1	≥ 1
f		n -sequence in \mathbf{X}	n -permutation of \mathbf{X}	composition of N with x
				subsets
	n labeled balls,	n-tuples of m things	n-permutation of m things	partitions of $\{1, \ldots, n\}$ into
	m labeled urns			m ordered parts
			-	(m)
		x^n	$x^{\underline{n}}$	$x! \left\{ {n \atop n} \right\}$
				(x)
$f \circ \mathbf{S}_n$		n-multisubset of X	<i>n</i> -subset of X	composition of n with x
$j + \sim n$				terms
	<i>n</i> unlabeled	n-multicombinations of m	n-combinations of m things	compositions of n into m
	balls, m la-	things		parts
	beled urns			
		$\left(\left(\begin{array}{c}x\\\end{array}\right)\right)$	$\begin{pmatrix} x \end{pmatrix}$	$\begin{pmatrix} & x \\ & & \end{pmatrix}$
		(n))	$\langle n \rangle$	((n-x))
$\mathbf{S}_{m} \circ f$		partition of N into $\leq x$ sub-	partition of N into $\leq x$ ele-	partition of N into x subsets
$\sim x + j$		sets	ments	
	n labeled balls,	partitions of $\{1, \ldots, n\}$ into	n pigeons into m holes	partitions of $\{1, \ldots, n\}$ into
	m unlabeled	$\leq m$ parts	10	<i>m</i> parts
	urns			
				(m)
		$\sum_{n} \{n\}$	$\lfloor n \leq x floor$	$\left\{ {^n} \right\}$
		$\sum_{k=0} \lfloor x \rfloor$		
0 1 0				
$\mathbf{S}_x \circ f \circ \mathbf{S}_n$		partition of n into $\leq x$ parts	partition of n into $\leq x$ parts	partition of n into x parts
	n unlabeled	partitions of n into $< m$	n pigeons into m holes	partitions of n into m parts
	balls. <i>m</i> unla-	partitions of n into $\leq m$	16 pigeons into 116 noies	partitions of <i>n</i> muo <i>m</i> parts
	beled urns	r		
		$p_x(n+x)$	$[n \leq x]$	$p_x(n)$

Equations of Interest

Falling Factorial or the first n elements of x!

$$x^{\underline{n}} = \frac{x!}{(x-n)!} = x(x-1)(x-2)\cdots(x-n+1)$$
$$x^{\underline{x}} = \frac{x!}{(x-x)!} = x!$$

Binomial Coefficient (aka n choose k)

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n^{\underline{k}}}{k!}$$

The recurrence relation for Pascal's Triangle:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Multiset (aka bag or multicombination) is modification of the concept of a set that allows for multiple instances of its elements

$$\begin{pmatrix} \binom{n}{k} \end{pmatrix} = \binom{n+k-1}{k} = \frac{n^{\underline{k}}}{k!}$$
$$\begin{pmatrix} \binom{x}{n-x} \end{pmatrix} = \binom{n-1}{n-x}$$

Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of n objects into k non-empty subsets

$$\begin{cases} n\\k \end{cases} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^i \binom{k}{i} (k-i)^n \\ \\ \sum_{k=0}^n \binom{n}{k} x^{\underline{k}} = x^n \end{cases}$$

Bell number is the total number of partitions of a set with n members over all values of k

$$B_n = \sum_{k=0}^n \left\{ \begin{matrix} n \\ k \end{matrix} \right\}$$

Details

```
n-sequence in X (f, \operatorname{Any} f)

x^n

itertools.product(range(x), repeat=n)

n-permutation of X (f, \operatorname{Injective} f)

x^n

itertools.permutations(range(x), n)

composition of N with x subsets (f, \operatorname{Surjective} f)

x! {n \atop x}

n-multisubset of X (f \circ S_n, \operatorname{Any} f)

\left( {x \atop n} \right)
```

n-subset of X $(f \circ \mathbf{S}_n, \mathbf{Injective} \ f)$ $\binom{x}{n}$ itertools.combinations(range(x), n)

composition of *n* with *x* terms $(f \circ \mathbf{S}_n, \mathbf{Surjective}\ f)$

$$(n-x)$$

- partition of N into $\leq x$ subsets $(\mathbf{S}_x \circ f, \mathbf{Any} f)$ $\sum_{k=0}^{x} {n \\ x}$
- partition of N into $\leq x$ elements $(\mathbf{S}_x \circ f, \mathbf{Injective} \ f)$ $[n \leq x]$
- partition of N into x subsets $(\mathbf{S}_x \circ f, \mathbf{Surjective} \ f)$ ${n \\ x}$
- partition of n into $\leq x$ parts $(\mathbf{S}_x \circ f \circ \mathbf{S}_n, \mathbf{Any} f)$ $p_x(n+x)$
- partition of n into $\leq x$ parts 1 ($\mathbf{S}_x \circ f \circ \mathbf{S}_n$, Injective f) $[n \leq x]$
- partition of n into x parts $(\mathbf{S}_x \circ f \circ \mathbf{S}_n, \mathbf{Surjective} f)$ $p_x(n)$

References

- Donald E. Knuth. The Art of Computer Programming: Volume 4A, Combinatorial Algorithms, Part 1. English. Upper Saddle River, NJ: Addison-Wesley, 2011. ISBN: 978-0-201-03804-0.
- [2] Project Euler. URL: https://projecteuler.net/.
- [3] Richard P. Stanley. Enumerative Combinatorics, Volume 1. English. 2nd ed. Vol. 1. Cambridge studies in advanced mathematics 49. Cambridge ; Cambridge University Press, 1997. ISBN: 0-521-55309-1.
- [4] Twelvefold way Wikipedia. URL: https://en.wikipedia.org/wiki/Twelvefold_way.